

Journal de la Société Chimique de Mauritanie Journal of the Mauritanian Chemical Society

Synthèse de deux composés isomères structuraux carboxylatoorganostanniques : Caractérisations spectroscopiques (infrarouge, UV-Visible, RMN¹¹⁹Sn) et détermination des structures par diffraction des rayons X

Mamadou Ba¹, Waly Diallo^{1*}, Bocar Traoré¹, Adrienne Ndioléne¹, Lamine Yaffa¹, Mamadou Sidibé¹, Michel Giorgi²

¹ Université Cheikh Anta Diop, Faculté des Sciences et Techniques, Département de Chimie, Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Dakar, Sénégal

² Université Aix-Marseille, Faculté des Sciences et Techniques, Spectropole D11–Campus St. Jérôme

52 Av. Escadrille Normandie Niemen –13013 Marseille, France

Infos	Abstract - Résumé
Received: 14 January 2024 Accepted: 24 November 2024	Abstract: Two new carboxylatoorganostannic compounds containing SnPh ₃ residu which have same chemical formular [Ph-(CH) ₂ COO ⁻][SnPh ₃ ⁺] have been obtained, by a reaction between cinnamate ammonium salt and triphenyltin (IV) chloride precursor. These two complexes have been characterized by
<i>Keywords</i> Carboxylate, SnPh ₃ residue, bidentate, trigonal bipyramidal <i>Mots clés</i> Carboxylato, résidu SnPh ₃ ,	spectroscopic techniques and X ray analysis. The first complex derived from dihexylammonium salt crystallized in monoclinic system with P2 ₁ /n space group $a = 12,81539(10)$ Å, $b = 11,48186(8)$ Å et $c = 16,07052(12)$ Å, $\alpha = 90^{\circ}$, $\beta = 102,3485(7)^{\circ}$ et $\gamma = 90^{\circ}$, $V = 2309.98(3)$ Å ³ et $Z = 4$. The complex derived from dibenzylammonium salt crystallized in monoclinic system with P2 ₁ /c space group with $a = 9,52630(10)$ Å, $b = 10,15700(10)$ Å et $c = 24,1129(2)$ Å, $\alpha = 90^{\circ}$, $B = 100,7340(10)^{\circ}$ at $\alpha = 90^{\circ}$.
Corresponding authors emails: waly.diallo@ucad.edu.sn	of 1 is polymeric in which the monomers [Ph-(HC) ₂ COO ⁻][SnPh ₃ ⁺] are linked via Sn-O coordinated bonds with 2,2 Å bond distance value. In the other case, the chemical structure of 2 is polymeric too but the Sn-O bonds which linked the monomers are near the Van Der Walls bond distances with 3,247 Å length value. In the two complexes, the ligand is coordinated in a bidente fashion and the geometry around the tin (IV) center is trigonal bipyramidal.
	Résumé : Deux nouveaux composés carboxylatoorganostanniques contenant le résidu SnPh ₃ de même formule brute [Ph-(CH) ₂ COO ⁻][SnPh ₃ ⁺] ont été obtenus, par la réaction entre un carboxyanioncinnamate contenu dans deux sels d'ammoniums disubstitués symétriques différents tels que le dibenzylammanium et le dihexylammonium avec le précurseur d'étain (IV) chlorure de triphénylétain(IV). Ces deux complexes obtenus sous forme de monocristaux ont été caractérisés par spectroscopies IR, UV-Visible, RMN ¹¹⁹ Sn et par la diffraction des rayons X. Le composé 1 [Ph-(CH) ₂ COO ⁻][SnPh ₃ ⁺] dérivant du sel de dihexylammonium, cristallise dans un système monoclinique de groupe d'espace P2 ₁ /n avec <i>a</i> = 12,81539(10) Å, <i>b</i> = 11,48186(8) Å et <i>c</i> = 16,07052(12) Å, $\alpha = 90^{\circ}$, $\beta = 102,3485$ (7)° et $\gamma = 90^{\circ}$, <i>V</i> = 2309.98(3) Å ³ et <i>Z</i> = 4 et le composé 2 [Ph-(CH) ₂ COO ⁻][SnPh ₃ ⁺] dérivant du sel de dibenzylammonium, cristallise dans un système monoclinique de groupe d'espace P2 ₁ /c avec <i>a</i> = 9,52630(10) Å, <i>b</i> = 10,15700(10) Å et <i>c</i> = 24,1129(2) Å, $\alpha = 90^{\circ}$, $\beta = 100,7340(10)^{\circ}$ et $\gamma = 90^{\circ}$, <i>V</i> = 2292.31(4) Å ³ et <i>Z</i> = 4. En outre, la diffraction des rayons X montre que le composé 1 est formé de monomères de formule [Ph-(HC) ₂ COO ⁻][SnPh ₃ ⁺] reliés par des liaisons de coordination de type Sn-O dont les distances sont presque égales à 2,2 Å tandis que le composé 2 est formé de monomères de formule [Ph-(HC) ₂ COO ⁻][SnPh ₃ ⁺] reliés par des interactions intramoléculaires de type Sn-O avec une distance de 3,247 Å qui sont proches de ceux de Van Der Waals (3,58 Å). L'anion carboxylate se comporte comme un ligand bidentate. La géométrie autour de l'atome d'étain pour ces deux composés est bipyramidal trigonal.

1. INTRODUCTION

Les carboxylates organostanniques ont fait l'objet d'une attention considérable en raison de leur intérêt structural et de leurs diverses applications dans les domaines tels que la médecine (Tuberculose), la biologie (anti-tumeur, antibactériens et antifongique) [1-4]. Au cours des dernières décennies, plusieurs chercheurs comme Tiekink 1994 [5], ; Davies et al., 2008 [6]. Chandrasekhar et Thirumoorthi, 2010 Ford et al. Et Poller et al. ont décrit des composés du type RCO₂SnPh₃ et conclu à l'existence de chaines infinies, avec des groupements SnC₃ plans reliés par l'anion [7-8].

L'étude des composés organnostanniques contenant des oxoanions en particulier les anions carboxylates a fait l'objet de plusieurs travaux dans notre laboratoire. En effet, ces complexes carboxylates ont été initiée récemment par la synthèse et la caractérisation de composés malonato, succinato et maléato [9-10].

Nous décrivons, dans le présent article, une méthode simple de synthèse de complexes à travers une réaction de substitution entre l'ion Cl⁻ du SnPh₃Cl par l'ion cinnamate Ph(CH)₂COO⁻ provenant de sels de dibenzylammonium et de dihexylammonium. Les deux complexes isolés sous forme de monocristaux ont été caractérisés par les techniques spectroscopiques spectroscopies infrarouge, UV-Visible et RMN ¹¹⁹Sn et les structures déterminées par diffractions des RX.

2. MATERIELS ET METHODES

2.1. Matériels

L'acide cinnamique, le dibenzylamine, le dihexylamine et le chlorure de triphénylétain ont été achetés chez Sigma Aldrich et utilisés sans aucune autre forme de purification. Les analyses élémentaires ont été réalisées à la plateforme d'Analyse Chimique et de Synthèse Moléculaire de l'Université de Bourgogne (PACSMUB) sur un appareil Fisions EA 1108 CHNS-O.

Les spectres infrarouges ont été enregistrés à partir d'un spectromètre FTIR Perkin Elmer dans la région 4000-400 cm⁻¹ à l'Université Cheikh Anta Diop de Dakar (Sénégal).

Les spectres UV-Visibles ont été enregistrés dans le H_2SO_4 (2N) dans la région 200-1000 nm avec une vitesse de 600nm/min et dont le lissage est Fort à partir de l'appareil Evolution 300 UV-VIS piloté par un logiciel VISION pro à l'Université Cheikh Anta Diop de Dakar (Sénégal).

Les spectres RMN ¹¹⁹Sn ont été enregistrés sur un spectromètre Bruker Avance 400 MHz avec un capteur large bande d'observation dans le solvant CDCl₃ à l'Université de Bourgogne, Dijon-France. Les données spectroscopiques infrarouge, UV-Visible et RMN sont exprimées en cm⁻¹, nm et ppm respectivement.

Des monocristaux incolores ont été sélectionnés sur une surface plane pour les complexes C_1 et C_2 . Les données ont été collectées en utilisant un diffractomètre Bruker APEX-II CCD à T=295K.

Des cristaux convenables de dimensions $0,34 \times 0,2 \times 0,16$ pour C₁ et $0,3 \times 0,12 \times 0,1$ pour C₂. Les structures ont été résolues en utilisant le programme ShelXT 2018/2 (Sheldrick, 2018) [11] qui est une méthode duale et l'interface graphique Olex2 1.5 (Dolomanov et al., 2009) [12]. Le modèle de raffinement est fait avec le programme ShelXL 2018/3 (Sheldrick, 2015) [13] utilisant la matrice des moindres carrés dans F².

Le faisceau de diffraction a été indexé et, le nombre total de scans et les images sont basés sur une méthode de calcul avec le programme APEX3 (Bruker, 2020) [14]. La résolution maximum a été faite à θ = 27.508° (0.77 Å).

2.2. Méthodes de synthèse

2.2.1. La synthèse du ligand $[\text{Hex}_2\text{NH}_2]^+[C_6\text{H}_5-(\text{CH})_2-\text{COO}]$. H₂O (L₁)

Le nouveau sel cinnamatenoté L_1 a été obtenu en mélangeant des solutions éthanoliques de dihexylamine (10 mmol ; 1,911g) et de l'acide cinnamique (10mmol ; 1,482g). Le mélange incolore obtenu est agité à température ambiante pendant deux (2) heures et la solution limpide est mise à l'évaporation lente Après quelques jours d'évaporation lente, des monocristaux beiges ont été obtenus avec une masse de 1,538g et un rendement de 46,10%.

Analyses élémentaires du ligand de formule $C_{21}H_{37}NO_3$ (351,28) : %Calculé (%Trouvé) C=71,75 (72,14) ; H=10,61(10,75) ; N=3,98(4,00). Point de fusion : 54°C

Données IR : vNH + vOH = 3400L, 2957m, 2932F, 2858F, $v_{as}COO = 1539F$, $v_sCOO = 1364tF$ Données UV (dans le $H_2SO_4(2N)$) ; λmax (nm) : 262 et 277(π - π^*) ; 308(n- π^*)

2.2.2. La synthèse du ligand $[Bz_2NH_2]^+[C_6H_5-(CH)_2-COO]^-$ (L₂)

Ce nouveau ligand cinnamate L_2 a été obtenu en mélangeant des solutions éthanoliques de dibenzylamine (10mmol; 2,034g) et de l'acide cinnamique (10mmol; 1,482g). Le mélange incolore obtenu est agité à température ambiante pendant deux (2) heures et la solution limpide est mise à l'évaporation lente Après quelques jours d'évaporation lente, des monocristauxbeiges ont été obtenus avec une masse de 2g et un rendement de 57,88%.

Analyses élémentaires du ligand de formule $C_{23}H_{23}NO_2$ (345,43) : %Calculé (%Trouvé) C=79,97 (80,08) ; H=6,71(6,64) ; N=4,05(3,97). Point de fusion : 108°C

Données IR : vNH + vCH = 3051m, 3026m, 2963m ; $v_{as}COO^{-} = 1538F$; $v_{s}COO^{-} = 1382tF$

Données UV (dans le $H_2SO_4(2N)$); λmax (nm) : 222; 250; 260 et 276(π - π *); 313(n- π *)

Notons que ces deux ligands L_1 et L_2 , sous forme de cristaux sont très stables. Les analyses élémentaires et la littérature montrent que ce sont de nouveaux sels de cinnamate d'ammonium.

2.2.3. La synthèse complexe C₁ :

Le complexe a été préparé par réaction entre le sel cinnamate de dihexylammonium $[Hex_2NH_2]^+[C_6H_5-(CH)_2-COO]^-(0,100g; 0,30mmol)$ et le chlorure de triphénylétain (0,120 g; 0,30 mmol) dans un milieu d'éthanol absolu. Le mélange, agité à température ambiante pendant deux (2) heures donne une solution limpide. Après une semaine d'évaporation lente, la solution donne des cristaux incolores. La réaction de synthèse est rapportée à la figure 1.

Point de fusion :144°C et Rendement =56.61% Données IR : $v_{as}COO = 1574m$; $v_sCOO = 1430F$; $v_{as}Sn-O_= 545F$ Données UV dans le $H_2SO_4(2N)$; $\lambda max (nm)$: $262(\pi - \pi^*)$; vers $303(n - \pi^*)$ Données RMN ¹¹⁹Sn dans le CDCl₃; δ (ppm) : -112,90

2.2.4. La synthèse du complexe C₂ :

Le complexe 2 est obtenu par réaction entre une solution éthanolique de chlorure de triphénylétain (0,112g; 0,30mmol) et une solution éthanolique de cinnamate de dibenzylammonium (0,100g; 0,30mmol). Le mélange, agité à température ambiante pendant deux (2) heures, donne une solution limpide. Après une semaine d'évaporation lente, des cristaux incolores ont été obtenus. La réaction de synthèse est représentée à la figure 2.

Point de fusion :145°C et Rendement =48,22% Données IR : vasCOO=1576m ; vsCOO=1429F ; v_{as}Sn-O= 546F Données UV dans le H₂SO₄ (2N) ; λ max (nm) : 262(π - π *) ; 301(n- π *) Données RMN ¹¹⁹Sn dans le CDCl₃ ; δ (ppm) : -112,82

Figure 1 : synthèse du complexe 1 $[C_6H_5-(CH)_2-COO]^{-}[SnPh_3]^+$ à partir du sel $[C_6H_5-(CH)_2-COO]^{-}Hex_2NH_2^+$ (Hex₂NH = dihexylamine)

Figure 2 : synthèse du complexe 2 $[C_6H_5-(CH)_2-COO]^{-}[SnPh_3]^{+}$ obtenu à partir du sel $[Bz_2NH_2]^{+}[C_6H_5-(CH)_2-COO]^{-}(Bz_2NH = dibenzylamine)$

3. RESUTATS ET DISCUSSION

3.1. Etudes spectroscopiques

Les spectres IR des deux complexes C_1 et C_2 montrent une bande forte vers 1570 cm⁻¹ (1574 cm⁻¹ pour C_1 et 1576 cm⁻¹ pour C_2) correspondant à la vasCOO⁻ et une bande moyenne vers 1430 cm⁻¹ (1430 pour C_1 et 1429 pour C_2) correspondant vsCOO⁻. Ces deux bandes montrent la présence de l'ion cinnamate Ph-(CH)₂-CO₂⁻. Les deux spectres présentent également un doublet à 690 cm⁻¹ et 729 cm⁻¹ en accord avec les vibrations de valence Sn-C dans les groupements SnPh₃. En haute fréquence, la disparition de l'absorption large des vibrations de valence vNH + vOH (bandes larges centrées 3051 et à 2858 cm⁻¹ pour L₁ et L₂ respectivement) montre une substitution du cation diammonium R₂NH₂⁺(R= Ph-CH₂- ; CH₃-(CH₂)₅-) qui était lié à l'anion carboxylate dans les sels par le cation SnPh₃⁺ du précurseur SnPh₃Cl via une liaison Sn-O avec le carboxylate par liaison de coordination forte ou de Van Der Walls. La variation Δv (variation entre vasCOO⁻ et vsCOO⁻) et de 144 cm⁻¹ pour C₁ et 145 cm⁻¹ pour C₂ permettent de conclure que le ligand Ph-(CH)₂-CO₂⁻ est bi-unidentate dans les deux complexes [3,15-18].

Les spectres UV des deux complexes C_1 et C_2 montrent la présence d'une bande d'absorption électronique vers 262 nm qui est caractéristique des transitions π --- π * du noyau aromatique de l'ion cinnamate et autour de 300 nm, une absorption large attribuée à la transition n- π * avec un effet hypsochrome de 5nm du complexe C_1 par rapport au sel L_1 et un déplacement de 12nm du complexe C_2 par rapport au sel L_2 .Cet effet de perturbation est dû la complexation du métal Sn(IV), pouvant être attribuées à un transfert de charge ligand-métal[19-22] car l'atome d'étain devient pauvre en électrons mais aussi entouré d'un ligand riche en électrons.

Les déplacements chimiques de l'atome d'étain sur le spectre RMN ¹¹⁹Sn nous renseigne sur le type de coordination et l'environnement de l'atome d'étain central (Davies et al., 2004) [23]. Sur les spectres RMN ¹¹⁹Sn en solution dans le CDCl₃ des complexes C_1 et C_2 , on note un signal assez large vers δ = -112 ppm (δ =-112.90 ppm pour C₁ et δ =-112.82 ppm pour C₂) en accord, selon Holeček et al., 1983, avec un environnement tetracoordiné autour de l'atome d'étain (IV) [24, 25].

3.2. Etude cristallographique :

Les données cristallographiques et les détails de raffinement sont résumés dans le tableau 1. Les longueurs et les angles de liaison sont représentés dans les tableaux 2 et 3.

Le composé 1 [Ph-(CH)₂COO⁻][SnPh₃⁺] dérivant du sel de dihexylammonium, cristallise dans un système monoclinique de groupe d'espace P2₁/n et le composé 2 [Ph-(CH)₂COO⁻][SnPh₃⁺] dérivant du sel de dibenzylammonium, cristallise dans un système monoclinique de groupe d'espace P2₁/c. L'unité asymétrique des deux complexes (figure 3) est formée d'un ion carboxylate C₆H₅-(CH)₂-COO⁻ monocoordiné à un résidu SnPh₃. L'environnement de l'atome d'étain (VI) étant tétraédrique, le résidu SnPh₃ est relié à l'anion par une liaison de coordination de type O – Sn entre les atomes O1et Sn1. Du point de vue supramoléculaire, les deux figures polymériques (figure 4 pour C₁ et figure 5 pour C₂) montrent des groupements SnPh₃ transcoordinés par deux atomes O de deux ions carboxylates distincts, ceci aboutit à des atomes d'étain pentacoordinés.

Les longueurs de liaison Sn-O dans l'unité asymétrique sont presque égales dans les deux complexes. Pour le complexe C₁, nous avons Sn(1)-O(1) et Sn(1)-O(2)¹ qui sont égales respectivement à 2,2690(19) et 2,2298(17) Å et pour le complexe C₂, nous avons Sn(1)-O(1) et Sn(1)-O(2)¹ qui sont égales respectivement à 2,1869(17) et 2,3326(16) Å.

L'angle O-Sn-O vaut 171,95° pour le complexe C_1 et 172.26° pour le complexe C_2 , qui sont des valeurs différentes de 180° ceci permet de dire que le squelette O-Sn-O n'est pas parfaitement linéaire dans les deux complexes.

La somme des angles C(ipso)-Sn-C(ipso) est égale à 359,99 pour le complexe C₁ et 359,64° pour le complexe C₂. Ces valeurs sensiblement égales à 360°, montre un résidu SnPh₃ plan de symétrie D₃h [26] donc une transcoordination presque parfaite du groupement SnPh₃.

Dans la structure moléculaire du complexe C_2 , l'angle formé par les atomes C10-Sn1-C16 est : 108,81° (10), mais qui est plus petit que l'angle formé par les atomes C10-Sn1-C16 du complexe C_1 qui vaut : 117.69°(10). Les angles C-Sn-O sont tous presque égales à 90° dans les deux complexes.

La figure 4 représente la structure polymérique du complexe C_1 dérivant du ligand cinnamate de dihexylammonium dans le plan [100] relié par des monomères de formule $[C_6H_5-(CH)_2-COO^-; SnPh_3^+]$. Dans cette structure, toutes les liaisons Sn(1)-O(2) et Sn(1)-O(1) sont des liaisons covalentes avec des distances respectives de 2,269 Å et 2,2298 Å [3].

Par contre la figure 5, nous montre la structure polymérique du complexe C₂ représenté dans le plan [100]. La structure montre des liaison de coordination de types Sn(1)---O(2) qui relie les unité asymétriques beaucoup plus faibles que les liaisons Sn-O dans C1 avec une valeur de 3,247 Å [Sn(1) ---O (2) =3,247 Å] qui sont très proches des liaisons de Van Der Waals (3,58 Å) [4].

COMPLEXES	COMPLEXE C ₁	COMPLEXE C ₂
FORMULE EMPIRIQUE	$C_{27}H_{22}O_2Sn$	$C_{27}H_{22}O_2Sn$
POIDS DE LA FORMULE	497,13	497,13
TEMPERATURE /K	295	295
SYSTEME CRISTAL	monoclinique	monoclinique
GROUPE D'ESPACE	P2 1/n	P2 1/c
A/Å	12,81539(10)	9,52630(10)
B/Å	11,48186(8)	10,15700(10)
C/Å	16,07052(12)	24,1129(2)
A/°	90	90
B/°	102,3485(7)	100,7340(10)
Γ/°	90	90
VOLUME/Å ³	2309,98(3)	2292,31(4)
Ζ	4	4
P _{CALC} G /CM ³	1,429	1,440
μ/MM ⁻¹	8,944	9,013
F(000)	1000,0	1000,0
TAILLE DU CRISTAL/MM ³	$0,34 \times 0,2 \times 0,16$	$0,3 \times 0,12 \times 0,1$
RADIATION	Cu Ka (λ = 1,54184)	Cu K α (λ = 1,54184)
20 PLAGE DE COLLECTE DE DONNEES/°	8,036 à 152,006	7,464 à 152,006
PLAGES D'INDICES	$\begin{array}{l} -16 \leq h \leq 16, -14 \leq k \leq 14 \\ -20 \leq l \leq 20 \end{array}$	$\begin{array}{l} -11 \leq h \leq 11, -12 \leq k \leq 12, \\ -29 \leq l \leq 30 \end{array}$
REFLEXIONS COLLECTEES	38112	46999
REFLEXIONS INDEPENDANTES	$\begin{array}{c} 4814 \ [\ R_{int} = 0.0461, \\ R \ _{sigma} = 0.0225] \end{array}$	$4774 [R_{int} = 0,0505, R_{sigma} = 0,0237]$
DONNEES/CONTRAINTES/PARAMETRES	4814/0/271	4774/0/272
QUALITE D'AJUSTEMENT SUR F ²	1031	1,031
INDICES R FINAUX [I>=2Σ (I)]	R1 = 0,0363, wR2 = 0,0962	R1 = 0,0317, wR2 = 0,0827
INDICES R FINAUX [TOUTES LES DONNÉES]	R1 = 0,0378, wR2 = 0,0992	R1 = 0,0327, wR2 = 0,0846
LE PLUS GRAND DIFF .PIC / TROU / E Å ⁻³	0,99/-0,78	1,10/-0,71

 $\frac{\textbf{Tableau 1}}{C_1 \text{ etC}_2}$: Données cristallographiques, Conditions de la collecte et Résultats de l'affinement pour les complexes

 $Tableau \ 2: \ Les \ liaisons \ principales \ et \ angles \ du \ complexe \ C_1$

Liaisons principales	Valeurs	Angles	Valeurs
Sn1 O1	2,2690(19)	O2 ¹ Sn1 O1	171.95(7)
Sn1 $O2^1$	2,2298(17)	C10 Sn1 O1	92.22 (8)
Sn1 C10	2,121(2)	$C10 \text{ Sn}1 \text{ O}2^1$	92.03 (9)
Sn1 C16	2,135(2)	C10 Sn1 C16	117.69 (10)
Sn1 C22	2,120(3)	C22 Sn1 C10	122.36 (10)
O1 C1	1,271(3)	C22 Sn1 C16	119.94 (11)
O2 C1	1,258(3)	C16 Sn1 O1	86.36 (9)
C1 C2	1,474(3)	C16 Sn1 O2 ¹	85.61 (9)
		C22 Sn1 O1	91.28 (9)
		C22 Sn1 $O2^1$	92.22 (9)

Liaisons principales	Valeurs	Angles	Valeurs
Sn1 O1	2,1869(17)	O2 ¹ Sn1 O1	172,26(6)
Sn1 $O2^1$	2,3326(16)	C10 Sn1 O1	90,70 (8)
Sn1 C10	2,126(2)	C10 Sn1 O2 ¹	88,31 (7)
Sn1 C16	2,134(2)	C10 Sn1 C16	108,81 (10)
Sn1 C22	2,134(3)	C22 Sn1 C10	116,46 (10)
O1 C1	1,272(3)	C22 Sn1 C16	134,37(10)
O2 C1	1,260(3)	C16 Sn1 O1	96,28 (8)
C1 C2	1,476(3)	C16 Sn1 O2 ¹	85.61 (9)
		C22 Sn1 O1	91.28 (9)
		C22 Sn1 O2 ¹	88,78 (8)

 $Tableau \ 3: Les \ liaisons \ principales \ et \ angles \ du \ complexe \ C_2$

Figure 3 : Unité Asymétrique du complexe C_1 et C_2 en ellipsoïde avec une probabilité de 30%

Figure 4 : Structure polymérique du complexe C1 montrant les liaisons de coordination Sn-O (2,269 Å)

Figure 5 : Structure polymérique du complexe C2 montrant les interactions Van der Walls Sn----O (3,247 Å)

4. CONCLUSION

Dans ce papier nous avons préparé deux complexes organostanniques de même formule brute présentant des caractéristiques spectroscopiques tout à fait identiques.

Mais l'étude par diffraction aux rayons-X montrent que les structures présentent beaucoup de différence

- Au niveau des unité asymétriques, une valeur de l'angle C-Sn-C de C₂ de l'ordre de 120° [C10 Sn1 C16=117.69 (10) par exemple] très supérieur à 109° contrairement à l'angle C-Sn-C [C10 Sn1 C16=108.81 (10) dans la structure de C₁. Donc le tétraèdre au tour de l'atome Sn de C₂ est déformé.
- L'autre différence est au niveau des caractères des liaisons Sn-O qui relient les unités asymétriques aboutissant aux polymères. Dans C₁ les liaisons ont un caractère covalente pure alors que dans C₂ les liaisons de coordination Sn-O sont des interactions plus faibles, de type Van der Walls.

Remerciements

Nous remercions l'équipe de ICMUB de l'Université de Bourgogne Dijon France en particulier Mr Laurent Plasseraud pour les analyses élémentaires

REFERENCES

- R. Willem, A. Bouhdid, B. Mahieu, L. Ghys, M. Biesemans, E. R. Tiekink, M. Gielen, J. Organomet. Chem., 531 (1997), 151.
- [2] J. D. Guzman, P. N. Mortazavi, T. Munshi, D. Evangelopoulos, T. D. McHugh, S. Gibbons, S. Bhakta, *Med. Chem. Comm.*, 5 (2014), 47.
- [3] H. Zhang, H. Yu, X. Liu, L. Tian, Main Group Metal Chemistry., 38 (2015), 157.
- [4] A. M. Sakho, A. Diallo, K. Conde, D. Keita, M. Kourouma, D. S. Zhu, B. Dioumessy, Int.J. Biol. Chem. Sci., 14 (2020), 1133.
- [5] E. R. T. Tiekink, Trends Organomet. Chem., 1 (1994), 71.
- [6] A. G. Davies, M. Gielen, K. K. Pannell, E. E. Tiekink, *Tin Chemistry.*, (2008).
- [7] B. F. E. Ford, B.V. Liengme, J. R. Sams, J. Organometal. Chem., 19 (1969), 53.
- [8] R. C. Poller, J. Organometal. Chem., 3 (1965), 321.
- [9] M. Sarr, A. D. Sarr, L. Diop, L. Plasseraud, H. Cattey, Acta. Cryst., 71 (2015), 899.
- [10] B. Diouf, B. Sarr, W. Diallo, M. S. Boye, C. A. K. Diop, S. Pechev, F. Michaud, Mediterr. J. Chem., 13 (2023), 1.
- [11] G. M. Sheldrick, C. Gilmore, H. Hauptman, C. Weeks, *Program Package for Crystal Structure Solution and Refinement.*, (2018).
- [12] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, H. Puschmann, J. Appl. Cryst., 42(2) (2009), 339.
- [13] G. M. Sheldrick, Acta. Cryst., 71 (2015), 3.
- [14] Bruker. APEX3, (2020).
- [15] T. Diop, M. B. Diop, C. A. K. Diop, A. D. Sarr, M. Sidibe, F. Dumitru, A. Van der Lee, Main Group Metal Chemistry., 45 (2022) 35.
- [16] K. Nakamoto, Infrared spectra of inorganic and coordination., (2009).
- [17] H. D. Yin, M. Hong, M. L. Yang, J. C. Cui, J. Molecular Structure., 984 (2010), 383.
- [18] W. Diallo, L. Diop, C. A. K. Diop, H. Cattey, L. Plasseraud, Main Group Metal Chemistry., 41 (2018), 183.
- [19] R. Haddad, E. Yousif, A. Ahmed, SpringerPlus., 2 (2013), 1.
- [20] A. M. Mohammed, European Journal of Engineering and Technology Research., 3 (2018), 8.

- [21] H. H. Mihsen, S. K. Abass, A. K. Abass, K. A. Hussain, Z. F. Abbas, Asian Journal of Chemistry., 30 (2018), 2277.
- [22] S. Pandiyan, L. Arumugam, S. P. Srirengan, R. Pitchan, P. Sevugan, K. Kannan, V. Gandhirajan, ACS omega., 5 (2020), 30363.
- [23] A. G. Davies, Organotin chemistry., 10 (2006), 203.
- [24] J. Holeček, M. Nadyornik, K. Handlíř, A. Lyčka, J. Organomet. Chem., 241 (1983), 177.
- [25] A. S. Sougoule, X. Xiao, C. A. Balde, A. M. Sakho, D. Zhu, *Heteroatom Chemistry.*, 26 (2015), 270.
 [26] K. Nakamoto, *Infrared and Raman spectra of inorganic and coordination.*, 5th edition (1997).